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Fracture mechanics of single-fibre pull-out test
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Department of Chemical Engineering, Yuan-Ze Institute of Technology, Neili,
Taoyuan Taiwan 320, Republic of China

Pull-out of an elastic fibre from an elastic matrix was investigated. A simple pull-out

mechanics has been developed, based on the fracture energy criterion, to describe the

debonding process, including friction. Experiments were carried out using

polytetrafluoroethylene (PTFE) fibres embedded in a polypropylene (PP) matrix. It was found

that growth of an interfacial crack was stable after the initiation of a debond at the loaded

fibre end. At first, the debonding force increased linearly with the crack length due to friction

in the debonded region. However, the crack accelerated after reaching a critical length,

dependent on the embedded fibre length. At this point, the force required to propagate the

debond levelled off. Thus, further increase in the debonding force was not necessary to

further complete the debonding process. The debonding force was found to be in good

agreement with that predicted by the present theory. Techniques for determining the

interfacial properties, including adhesive fracture energy, compressive residual stress and

coefficient of friction, were considered. In addition, a simple criterion has been derived to

predict which fibre end, either embedded end or loaded end, will debond first when the

specimen is subjected to an axial load.
1. Introduction
Several methods, such as fragmentation test, micro-
bond test, and fibre pull-out test, have been developed
to evaluate the bonding strength of fibre-reinforced
polymer composites. Amongst these, the single-fibre
pull-out test is widely used due to its simple sample
preparation and measurement. The bonding strength
between fibre and matrix is determined by measuring
the force required to pull out a fibre embedded in the
matrix. It has been pointed out that the single-fibre
pull-out test can be used to evaluate interfacial prop-
erties [1] such as interfacial shear strength and fric-
tional stress. Most of the investigators have used the
interfacial shear strength as a criterion for fracture, i.e.
a crack will propagate when the interfacial shear stress
at the crack tip is greater than the shear strength of the
interface. Thus, a number of theories have been put
forward to predict the stress distribution in compo-
sites [1—5].

On the other hand, the debonding process can be
treated using fracture energy as a failure criterion as
well. Based on Griffith’s fracture criterion [6, 7], the
debonding will take place when the net available en-
ergy, i.e. the work done by the applied load minus the
energy stored in the system, is larger than the work of
the interfacial detachment. The work of detachment
(adhesive fracture energy) is denoted by G

!
, the

amount of energy to separate unit area of the interface.
Thus, the adhesive fracture energy is used to charac-
terize the bonding strength.

Here, we try to elucidate the mechanics of the de-
bonding process for an elastic fibre embedded in an

elastic matrix in terms of the energetics of failure. The
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adhesive fracture energy and the interfacial properties
of PTFE fibre/PP matrix are deduced from the single-
fibre pull-out test.

2. Theoretical considerations
2.1. Initiation of a debond
When load is applied to a single-fibre composite, the
shear stress developed at the interface is not constant
[1—4]. It is generally accepted that interfacial debond-
ing takes place when the interfacial shear stress
exceeds the ultimate shear strength of the interface.
Owing to stress concentration, there are two possible
locations for a debond to initiate, i.e. either at the
loaded fibre end or at the embedded fibre end, in
a non-cracked specimen. Based on stress analyses,
Leung and Li [2] derived a simple criterion to predict
which fibre end will debond first, by comparing the
interfacial shear stresses at both ends. Results showed
loaded-end debonding will take place when
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where r is the fibre radius, R is the matrix radius, and
E
&

and E
.

are Young’s moduli of fibre and matrix,
respectively. On the other hand, embedded-end de-
bonding occurs if the ratio of E

&
/E

.
is greater than

the value of (R/r)2!1. The effect of Poisson’s ratios
of fibre and matrix was investigated by Hsueh and
Becher [3], Similar results to Equation 1 were ob-
tained. Recently, a more rigorous analysis was carried

out by Fu et al. [4, 5] using numerical methods to
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investigate the fibre debonding and pull-out from an
elastic matrix. Results showed that interfacial shear
stress at the loaded end is large and a surface debond
occurs when a

0
is less than 0.5*. Specifically, debon-

ding can start at the loaded end, the embedded end or
both ends, depending on the value of a

0
. The para-

meter a
0

is a complex function of the fibre and matrix
elastic properties and the fibre volume fraction.

2.2. Propagation of a debond from the
embedded end

The mechanics of debonding from the embedded fibre
end has been extensively investigated by Gent and
co-workers [7—9]. They consider the debonding pro-
cess of samples consisting of a single rigid fibre embed-
ded in a soft block of a linearly-elastic matrix. Based
on an energy criterion, the total force F

5
required to

propagate a debond is given by

F
5
" 2p(R2r!r3 )1@2(E

.
G

!
)1@2#2prcs

&
(2)

where c is the length of debond and s
&
is the frictional

stress in the debonded region. The first term is de-
noted by F

0
and is attributed to the detachment of the

fibre/matrix interface only and the second term is the
contribution of the friction at the interface, assuming
a constant frictional stress. Equation 2 has been veri-
fied both by experiments and by numerical simula-
tions [8, 9].

2.3. Propagation of a debond from the
loaded end

The mechanics of debonding from the loaded fibre end
has been similarly investigated [10—12]. According to
Equation 1, this mode of interfacial failure takes place
when a relatively soft, linearly elastic fibre is embed-
ded in an inextensible (infinite) matrix. Fig. 1b illus-
trates the pull-out model.

On the assumption that the energy changes both in
the matrix and in the embedded fibre are negligible
compared to that in the free fibre, three contributions
to the energy change are involved as an increment of
debonded length, *c. First, the work done by the
applied load is given by Fe*c, where e is the tensile
strain in the free fibre and is equal to F/pr2E

&
. Second,

the total strain energy stored in the fibre is increased
due to the increase of the strained fibre volume, pr2*c.
Thus, the amount of increase in the strain energy is
F2*c/2pr2E

&
. Third, the energy expended in the de-

bonding process is expressed as 2prG
!
*c. Using Grif-

fith’s fracture criterion, debonding takes place when
the net available energy, i.e. the work done by the
applied load minus the energy stored in the fibre, is
larger than the work for interfacial detachment, i.e.
*a
0
taken from [4], a

0
"1/[(R2/r2!1)m2#1], where m2"M(1!t

&
)/E

[(R2/r2#1)/(R2/r2!1)!1]N/M(1!t
&
)/(E

.
E
&
)#(1/E2

.
) [(R2/r2#1)/(R2/r2

Fe*c!F2*c/2pr2E
&
*2prG

!
*c (3)
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Figure 1 (a) Sketch of the clamp for pull-out test, and (b) pull-out
model for specimens with embedded fibre length, ¸, and length of
debond, c.

Thus, the pull-out force is derived to be

F2
0
"4p2r3E

&
G

!
(4)

The pull-out force for a long debond without friction,
F
0
, is constant and is independent of the embedded

fibre length. Equation 4 has been developed by
Cherepanov [11] from stress analyses and has been
verified by Morrison et al. [13] using finite element
analyses.

When the frictional stress in the debonded region is
taken into account and is assumed to be constant
(which is valid only for a small debonded length; the
details are discussed in Section 4.5), Equation 4 is
modified, similarly to Equation 2, to be

F
5
"2pr3@2(E

&
G

!
)1@2#2prcs

&
(5)

According to Equations 2 and 5, a plot of measured
total force versus crack length gives a straight line.
By extrapolating the debonded length to zero, the
debonding force in the absence of friction, F , is ob-
2
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tained and used to calculate the adhesive fracture



energy [8]. The slope is then used to determine the
frictional stress between fibre and matrix.

3. Experimental details
3.1. Materials and sample preparation
A commercial grade of polypropylene powder (Pro-
fax, PC366) without additives, supplied by Taiwan
Polypropylene Co., was used as the matrix. The vis-
cosity average molecular weight is 2.8]105. The
melting temperature determined by DSC, with a heat-
ing rate of 10 °C min~1, is 164.1 °C. The PTFE fibres
were provided by Du Pont Co. The diameter is 30 lm.
To make a single-fibre composite, the technique de-
veloped by Li and Grubb [14] was performed to
eliminate the meniscus at the fibre ends using a sili-
cone rubber mould to incorporate PP powder and
PTFE fibre. The assembly was then heated to 200 °C
for 10 min on a hot stage (Mettler, FP-82) before being
quenched to 25 °C in water. The morphology of the
specimens prepared in this manner was observed us-
ing a polarized optical microscope (Nikon MICRO-
PHOT-FXA). The spherulitic radius of PP was 7 lm
and the crystallinity was 41%. Detailed studies on the
morphology were provided elsewhere [15]. Young’s
modulus and yield stress for the PP matrix were deter-
mined from the tensile stress—strain relation to be
0.72$0.07 GPa and 15.3$1.0 MPa, respectively.
However, the PTFE fibre possessed a slightly higher
Young’s modulus, 0.90$0.08 GPa, and a yield stress
of 118$19 MPa. The linear stress—strain relation was
found to hold up to about 10% strain for PTFE fibre.

3.2. Measurements
The pull-out test was carried out at room temperature
using an Instron tensile testing machine. A small
frame, as shown in Fig. 1a, was used to fasten the
specimens. The accuracy of the measured load is
$0.3 mN. A relatively slow rate of stretching, of
1.7 lm s~1, was employed. The crack growth was
monitored using a microscope, video camera and re-
corder when the applied load was increased continu-
ously. Owing to the rather small radius of PP
spherulites which scatter the light less, the specimens
were transparent. The tip of the interfacial crack was
barely able to be traced under appropriate reflection
of light and the debonded length was determined
using a stage micrometer. Thus, the relation between
load and the corresponding debonded length was re-
corded simultaneously. Specimens with different em-
bedded fibre length were tested, but the width and
thickness were kept constant at 3 mm and 1 mm, re-
spectively, as shown in Fig. 1b. Each experimental
result was an average of five pull-out tests.

4. Results and discussion
4.1. Observation of debonding process
It has been observed that a crack initiated at the
loaded fibre end and propagated along the PTFE
fibre/PP matrix interface. This is consistent with the

prediction of Equation 1, taking r"15 lm and equiv-
Figure 2 A typical plot of pull-out force versus displacement.
(a) ¸"1.5 mm, and (b) ¸"5 mm.

alent radius of matrix R"980 lm. Fig. 2a shows
a typical force—displacement relation in the pull-out
test. Similar plots for the pull-out force against the
displacement have been predicted recently by numer-
ical simulations [16]. Since the compliance of the free
fibre is much greater than that of the composite, the
initial linear part is due to the deformation of the free
fibre. Initial debonding takes place at point A, the
force being denoted by F

*
, where the stiffness starts to

decrease. As the debonding proceeds, the stiffness
gradually decreases until at point B complete debon-
ding occurs. The corresponding force is denoted by
F
.!9

, the maximum debonding force. Simultaneously,
the force suddenly drops to a low value of F

&
, point C.

Thereafter, the fibre is sliding along the hole sur-
rounded by matrix until at point D where the whole
embedded length is pulled out from the matrix. Speci-
mens with long embedded fibres show large force
variation when the fibre slides along its entire length,
Fig. 2b. This is due to the complex interaction between
the elastic recovery of the strained fibre and the fric-
tional resistance of the matrix [14]. Nevertheless, the
sliding velocity of the fibre is constant (discussed next).

The debonding process was monitored using
a microscope under appropriate light reflection. Fig. 3
shows the photomicrographs of debonding at different
stages. The debonded region appears in contrast as
a bright line around the fibre surface. It was found that
the fibre slips within the hole immediately after com-
plete debonding, Fig. 3e. The amount of distance to

slip depends on the value of F

.!9
, i.e. the embedded
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Figure 3 Photographs of debonding at different stages for specimens with ¸"4.0 mm, (a) c"0.33 mm (b) c"0.78 mm (c) c"1.35 mm
(d) c"3.33 mm (e) right after complete debonding and (f) sliding of fibre. (The load is applied to the right and the arrows point to the tip of

the debond).
Figure 4 Measured debonded length before complete debonding
and sliding distance of fibre after complete debonding as a function

of time. (a) ¸"1.5 mm, and (b) ¸"5 mm.
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fibre length. The measured debonded length was plot-
ted against time to determine the rate of crack propa-
gation, as shown in Fig. 4a. The initial rate of crack
growth was controlled by the pulling rate of the fibre,
ca. 1.8 lm s~1. When the crack reached a critical
value, a distinct change in the rate of crack growth was
observed. A similar trend was found in specimens with
different embedded fibre lengths, Fig. 4b. The sliding
distance of the fibre, after complete debonding, was
measured as well, and is also shown in Fig. 4. The
sliding velocity was rather close to the pulling rate of
the fibre and independent of the embedded fibre
length. Thus, PTFE fibre did not exhibit stick—slip
behaviour when sliding through the PP matrix. This is
attributed to the fact that the static frictional coeffic-
ient of PTFE fibre is only slightly higher than the
dynamic value [17].

4.2. Effect of embedded fibre length on Fi,
Fmax and Ff

Plots of measured values, F
*
, F

.!9
and F

&
, against the

embedded fibre length are shown in Fig. 5. It is noted
that the debonding stress should be smaller than the
yield stress of the fibre to ensure that the interfacial
debonding and subsequent fibre pull-out take place.
The force to yield the PTFE fibre is about

83$13 mN, represented by the broken line. After the



Figure 5 Variation of force to initiate a debond, F
*
(e), maximum

debonding force, F
.!9

(d) and the force right after complete debon-
ding, F

&
(L), with the embedded fibre length. (The broken line

represents the yield force of the PTFE fibre.)

pull-out test, the diameter and the mechanical proper-
ties of the fibre were measured. Similar results were
obtained to those for PTFE fibres before test. Thus,
fibre fracture was not found in the test.

It can be seen that the force required to initiate
a debond, F

*
, independent of the embedded fibre

length, Fig. 5. The maximum debonding force, F
.!9

,
was found to increase with embedded fibre length.
This was expected because the total debonded length
is larger for specimens with longer embedded fibre
length. Thus the increase in F

.!9
is attributed to the

friction in the debonded region. However, a plateau
value of F

.!9
was reached for specimens with embed-

ded length greater than 3.0 mm. A similar relation
between F

.!9
and embedded length has been found in

[14, 18—23]. Moreover, F
&
showed the same trend as

F
.!9

. Values of F
&
was used to estimate qualitatively

the level of friction. The magnitude of F
&
was about

two to four times larger than F
*
. Thus, the contribu-

tion of friction is significant and cannot be neglected in
a pull-out test.

To calculate the adhesive fracture energy, a method
to exclude the frictional effect has been suggested [13]
by substituting the drop in force, F

.!9
!F

&
, into

Equation 4. But, it should be noted that the fibre end
extends into the hole left by the fibre for a small
distance, as shown in Fig. 3e. It has observed that the
slip distance was about 70 to 400 lm, depending on
the maximum debonding force or the embedded
length. Therefore, the real frictional force should be
larger than the observed value of F

&
. A method to

determine the adhesion strength without a frictional
effect is suggested as follows. A linear relation between
F
.!9

and fibre aspect ratio was found, Fig. 6, for ¸/d
ranging from 10 to 80, where d is the fibre diameter.
The slope is apparently correlated with the frictional
stress, according to Equation 5 when the debonded
length, c, is replaced with embedded length, ¸. The
slope was determined to be 0.367 mN. By extrapola-
ting the value of F

.!9
to zero embedded length, the

force to separate the interface in the absence of friction
was obtained. The extrapolated value, F

0
, is 12.4 mN

which is slightly larger than the value of F , 9.0 mN. It

*

is attributed to the difference in stress concentration
Figure 6 Plot of force versus fibre aspect ratio, ¸/d.

Figure 7 Total debonding force as a function of debonded length
for specimens with different embedded fibre length. Key:
m ¸"0.6 mm; L ¸"1.5 mm; n ¸"3.0 mm; e ¸"4.0 mm;
£ ¸"5.0 mm; K ¸"7.0 mm.

caused by different local stress fields. To determine the
effect of random data error, the average force,
10.7 mN, was applied to calculate the adhesive frac-
ture energy using Equation 4. The values of s

&
and G

!
determined in this manner are 0.13 MPa and
0.96$0.32 J m~2, respectively.

4.3. Determination of Ga and sf from
Equation 5

Fig. 7 shows the variation of debonding force with the
corresponding debonded length for specimens with
different embedded fibre length. After a debond is
initiated, the debonding force increased linearly with
crack length. It is attributed to the contribution of
friction in the debonded region, as predicted by Equa-
tion 5. However, the debonding force levelled off after
the crack length reached a value of about 1.0 mm. At
this point, the rate of crack growth was increased
and led to complete debonding. Although different
embedded fibre lengths were used, the intercept at
zero crack length was constant, 13.6 mN. The force at
zero debonded length also represents the load re-
quired to detach the interface without a frictional
effect. This value was rather close to both F

0
and F

*
,

determined from Fig. 6. The adhesive fracture energy
was determined to be 1.5 J m~2 from Equation 5.

Moreover, the linear dependence of the force on the
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crack length was constant as well, 27.9 N m~1, for
a debonded length smaller than 0.8 mm. The frictional
stress s

&
was calculated to be 0.30 MPa, according to

Equation 5. It is about twice as large as the value
determined previously from the slope of the linear
relation of F

.!9
versus embedded length, Fig. 6. This

discrepancy is due to the fact that the rate of crack
growth is not constant throughout the whole debon-
ding process, as shown in Fig. 4. Thus, the frictional
stress determined from the linear dependence of
F
.!9

versus embedded length will be underestimated.
However, the analysis from the F

.!9
—¸ relation pro-

vides a feasible approach to estimate reasonable
values of s

&
and G

!
for specimens whose matrix is not

transparent which makes the observation and
measurement of crack growth infeasible.

4.4. Determination of residual stress and
coefficient of friction

The interfacial frictional stress in the debonded region
is equal to lr

N
, where l is the frictional coefficient and

r
N

is the normal stress acting on the fibre surface. The
normal stress is given by [18]

r
N

" r
3
!Kr

&
(6)

where K"E
.
t
&
/E

&
(1#t

.
), r

3
is the residual com-

pressive stress, r
&
is the axial stress of the fibre, and

t
&
and t

.
are the Poisson’s ratios of fibre and matrix,

respectively. The residual compressive stress arises
from the different levels of thermal shrinkage between
fibre and matrix, owing to the mismatch in the ther-
mal expansion coefficient, after the specimen is quen-
ched from 200 to 25 °C. When a relatively large stress
r
&

is applied to the fibre, the frictional stress is not
constant due to the reduction of r

N
, according to

Equation 6. Thus, Equation 5 is no longer valid at
a large applied force which makes the Poissonian
contraction of the fibre significant. Moreover, the con-
tact between matrix and fibre disappears when the
applied stress reaches a critical value at which the
value of r

N
is zero. Simultaneously, the growth of the

debond will accelerate without further increase in the
applied stress. This was revealed by the levelling off of
the debonding force for specimens with long embed-
ded fibre length (Fig. 5) or long debonded length
(Fig. 7). The residual compressive stress is determined
using the plateau value of F

.!9
and expressed as fol-

lows

r
3
"

KF
.!9

pr2
(7)

by taking r
N
"0 in Equation 6. When the elastic

properties are employed (E
&
"0.9 GPa, E

.
"0.72

GPa, t
.
"0.33, and t

&
"0.3), the calculated value of

r
3
is 15.3 MPa.
However, effect of fibre contraction can be neg-

lected for specimens with a small debonded length or
a short embedded fibre length. In this case, the fric-
tional stress is assumed to be constant, as discussed
previously, and equal to lr . Thus, the coefficient of
3
friction is estimated by dividing the frictional stress at
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small debond, s
&
, with the residual stress. The coeffi-

cient of friction is determined to be 0.02 which is in
good agreement with the reported value [17], 0.03,
considering the inert nature of PTFE fibre.

4.5. Effect of Poissonian contraction of fibre
The force equilibrium between the applied stress,
r
&
("F

5
/pr2), and the frictional stress, lr

N
, acting on

a debonded length, dc, is given by

pr2(p
&
#dr

&
) " pr2r

&
#2prl(r

3
!Kr

&
) dc (8)

when Poissonian contraction of fibre is taken into
consideration. Integration of Equation 8 gives

r
3
!Kr

&
r

3
!Kr

0

"exp(!2lKc/r) (9)

using a boundary condition: the force to initiate a de-
bond is given by Equation 4, i.e. r

&
"r

0
"2(E

&
G

!
/

r)0.5 at c"0. Equation 9 is valid for the whole debon-
ding process while Equation 5 is only applied to initial
debonding where the debonded length is small. After
substituting the values (r

3
"15.3 MPa, r

0
"19.2

MPa, and K"0.18 determined previously) in Equa-
tion 9, the effect of frictional coefficient on the debon-
ding force is as shown in Fig. 8. The total debonding
force, F

5
, increases with the coefficient of friction.

Moreover, the length of debond to reach the plateau
of F

5
decreases with increasing coefficient of friction. It

is consistent with the numerical results predicted by
Fu et al. [5]. Fig. 8 also shows the results of experi-
mental measurements of specimens with ¸"7 mm. It
is obvious that better agreement is achieved when
l"0.05 is used. This is close to the value obtained by
the method stated in Section 4.4.

According to Equation 9, two important interfacial
parameters must be considered to predict the relation
between pull-out force and displacement, Fig. 2. One
is the residual stress, r

3
, and the other is the bonding

stress at the interface, represented by r
0
. When the

value of r
3
/K is larger than r

0
value, the total resist-

ance to pull-out, F
5
, increases with the debonded

length. This is the case for the present work. Observa-
tion of the crack growth is possible under appropriate

Figure 8 Effect of frictional coefficient on the total debonding force
for specimens with ¸"7 mm. Key: — —— l"0.10; —— l"0.05;

— · — l"0.03; · · · · l"0.01.



control, as shown in Fig. 3. Conversely, the debonding
force is decreased with debonded length when r

3
/K

value is smaller than r
0
value. A catastrophic growth

of debond takes place once a crack initiates at the fibre
end. Only the maximum debonding force can be re-
corded on the force—displacement curve [24] without
changing in stiffness at the AB region, as shown in
Fig. 2. Therefore, the observation of crack growth is
not possible.

4.6. Which end of the fibre will debond first?
The forces to propagate a debond in the absence of
friction are given by Equations 2 and 5, taking c"0,
for a debond starting from the embedded end and
from the loaded end, respectively. They are also used
to estimate the forces needed to initiate a debond if the
intensity of stress singularity both at the crack tip and
near the fibre end is not taken into consideration.
Therefore, by comparing the fracture forces,
a transition from embedded-end debonding to loaded-
end debonding is expected to occur,

2p (R2r!r3 )1@2(E
.
G

!
)1@2'2pr3@2(E

&
G

!
)1@2 (10)

The result is exactly the same as Equation 1 which has
been derived by Leung and Li [2] using complicated
stress analyses to calculate the interfacial shear stress
distribution. However, a shear strength debonding
criterion was applied in their modelling of the debond-
ing process. Our analyses were based on a fracture
energy criterion, using G

!
to characterize the strength

of the interface. Thus, both approaches come to the
same conclusion in predicting which fibre end will
debond first. The present work shows that the adhes-
ive energy-based theory provides a concise analysis.

Fig. 9 shows the comparison of the debonding
transition predicted both by Equation 1 (solid line)
and by numerical analyses [4] (data symbols). In the
numerical analyses, a complex parameter a

0
was used,

as defined earlier, to predict the debonding mode. In
other words, embedded-end debonding occurs when
a
0

is larger than 0.5. On the other hand, loaded-end
debonding takes place when a

0
is smaller than 0.5. It

Figure 9 Relation of E
&
/E

.
with R/r for a transition from embed-

ded-end debonding to loaded-end debonding. (The solid line is
predicted by Equation 1, and symbols are obtained using the para-
meter a derived by Fu et al. [4]. n: t "0.33, t "0.33;
0 & .
L: t

&
"0.33, t

.
"0.5; K: t

&
"0.5, t

.
"0.33.)
can be seen that Equation 1 is identical to that derived
by the a

0
parameter if t

&
"t

.
"0.33. Furthermore,

the effect of Poisson’s ratios, both t
&
and t

.
, on the

transition is insignificant. This is consistent with the
previous work by Hsueh and Becher [3]. In general,
embedded-end debonding occurs when the Young’s
modulus of the fibre is much higher than that of the
matrix. The steel wire/rubber system is such a case
which has been investigated in detail by Gent and
co-workers [7—9]. In most polymer composite sys-
tems, however, loaded-end debonding is usually ob-
served [14, 23] due to the relatively small value of the
fibre radius and comparable values of E

&
to E

.
.

5. Conclusions
The mechanics of the debonding process, starting
either from the embedded end or from the loaded end,
in the pull-out test can be well defined using a fracture
energy criterion. The pull-out force in the absence of
friction is found to be independent of the embedded
fibre length, as predicted by Equations 2 and 4 for
each debonding failure. But, the apparent maximum
debonding force increases with the embedded fibre
length. It is attributed to the friction between fibre and
matrix in the debonded region. The contribution of
friction to the total debonding force can be as large as
that of detachment of the interface. It has been found
that after a debond reaches a critical size, further
increase in the debonding force is not necessary to
advance the failure. Moreover, the value of
F
.!9

reaches a plateau value for specimens with
a rather long embedded fibre length. It is attributed to
the Poissonian contraction of the fibre in the debon-
ded region which reduces the normal stress acting on
the fibre and the effect of friction. In general, adhesive
fracture energy, coefficient of friction and the residual
compressive stress can be deduced from a single-fibre
pull-out test.
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